

DMSO JPSD Experiment

AMG-15 10/9/96

(Originally presented at DIS 15th September 17, 1996)

Russ Richardson (SAIC rrichardson@std.saic.com)

Rich Briggs (VTC rbriggs@virtc.com)

Gordon Miller (SAIC gmiller@mnsinc.com)

Jeff Pace (VTC jpace@virtc.com)

Dave Meyer (VTC meyer@virtc.com)

Agenda

- Overview of JPSD Experiment
- Federate Object model
- Federate Common Software
- Result Summary


- Adapt the present JPSD CLCGF Federation to the HLA using the RTI:
 - Investigate HLA extensibility to a federation of aggregate, entity, and MITL C&C systems.
 (real-time, time managed, and engineering)
 - Exercise the Aggregation/Deaggregation and C4I support within the RTI
 - Take advantage of the extensive infrastructure in place within Joint Precision Demonstration.
- Provide Continuous feedback on interface spec. and performance to the AMG

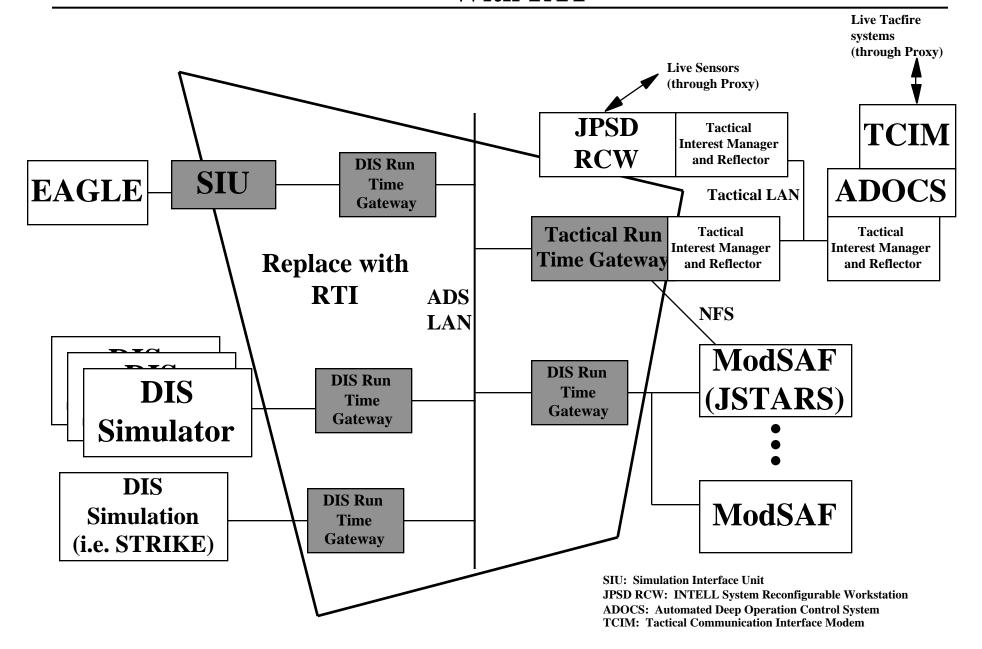
CLCGF: Corp Level Computer Generated Force

CLCGF Architecture

SIU: Simulation Interface Unit

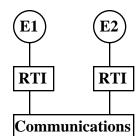
JPSD RCW: Intell Reconfigurable Workstation ADOCS: Automated Deep Operation Control System TCIM: Tactical Communication Interface Modem

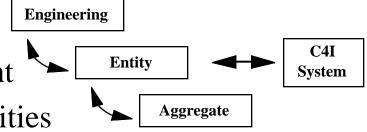
Technical Approach



- Create the FOM using the HLA Object Model Template
- Make minimal changes to the application code, just the interface to the RTI
- Repeat what CLCGF does now but with HLA RTI
 - Strip out Simulation interfaces to the public world view
 - Replace part of the SIU, Tactical Run-time Gateway, and DIS Runtime Gateways with Federate Common Software and the RTI.
 - Create a Exercise manager
 - Create a Data Collection Manager (MOP)

Replace CLCGF Runtime Components With RTI




Test to Address Key Technical Issues

- Use existing applications within an Army scenario to quantify HLA
 - Latencies
 - RTI performance data
 - Communication performance data

- Test Hypothesis that the RTI can support the present CLCGF federation and JPSD scenario
 - Required Latency
 - Time and ownership management
 - C4I interfaces with surrogate entities

SAL® Presently

JPSD Experiment

- Federate Specific Software
- Federation Common Software
- RTI Software (HLA Common SW)
- Further Investigate Multi-level Interaction
- -Further investigate ownership management
- -Assess ease/approaches of integrating other FOMs

Scenario Activity Timeline (Deep Strike Against Moving Armor)

Time —

EAGLE has Control of all entities

EAGLE controls Aggregate entities

EAGLE controls all entities

ModSAF
Joint STARS
Generates Entity
Level MTI

Aggreagate Level Model in Overall Control

Entity Level Sensor Model

Detect Targets JPSD RCW operator making decision

Hand-off from EAGLE to ModSAF selected entities

Live C2 devices for Selcting Targets/Weapons

Create a Fire Mission

ADOCS operator making decision

ModSAF controls selected entities

Execute

Fire Mission Fire Mission Gets Executed at Entity Level

Hand-off to Strike

Strike does submunition

Get ready for Next Engagement High Fidelity Engagement Results Returned to Aggregate Sim Entity Level Model for Selected Targets and Weapons

Engineering Level Engagement Model

FOM Development Process

- Started with existing well-defined scenario
 - Translated JPSD Interface Requirement Specification (IRS) to OMT format
 - Refined JPSD Interest Mgmt. scheme
 (multicast groups) to HLA IM scheme

Tools

 Manual entry into Excel Workbook. Tedious and hard to maintain due to multiple views of the same data. (Majority of time spent here)

Resulting Product

Entity	Platform	Land	Tank	M1
				T72
				T54
			ArmoredFightingVehicle	BMP-1
 				BTR80
DIS-like Data Representation			SelfPropelledArtillery	M270_ATACMS
				M109
			SmallWheeledUtilityVehicle	M577A1
		Air	AttackHelicopter	AH64
				RAH66
			ElectronicWarfare	JSTARS
1	I		UAV	HUNTER_2GEN
	Munition	AntiArmor	Guided	BAT_P3I
		BattlefieldSupport9	ATACMS_MISSILE	

- Class attributes are minimal fields of EntityState PDU for each entity type
- Interactions are used for sporadic PDUs, Tactical Messages, hand-off to engineering models, and Aggregation/Disaggregation

Resulting Product (cont.)

• Component Table specifies mapping between Aggregate

RED_TANK_CO [9]	T54 [10]
	BTR80 [3]
RED_TB_PLUS [18]	BMP-1 [10]
	T72 [30]
BLUE_MECH_DIV_CP [1]	M1 [5]
	M577A1 [12]

and Entity representation (specifies ModSAF CLCGF template definitions)

 Data structure table defines complex attributes

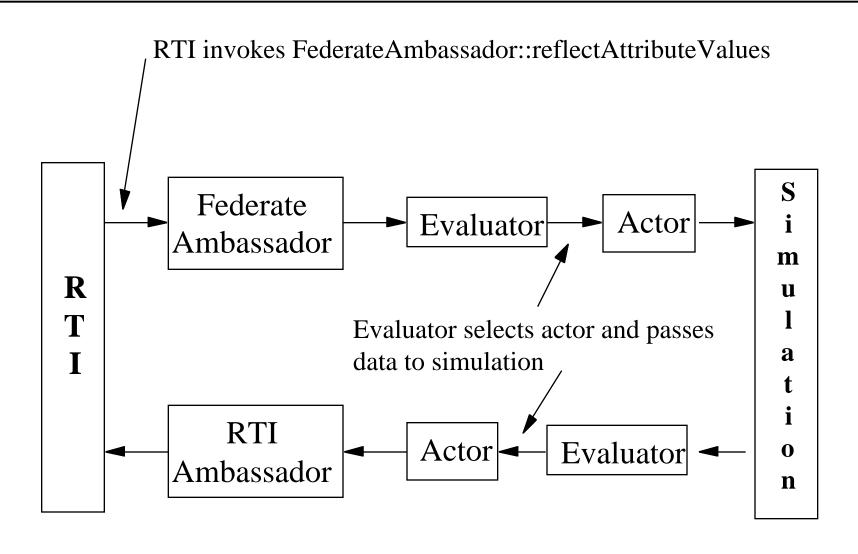
DataStructure	Field	Datatype
RE_Reference	Title	string
	Originator	string
	Day	short
	Hour	short
	Minute	short
	SerialNumber	string
	SpecialNotation	string
	NASIScode	string
	Ampn	string
	Narr	string

Federation Common Software (FCS)

- Purpose: Develop software to facilitate the integration of CLCGF & HLA Testbed simulations with the RTI.
 - Encapsulation and automation of services all simulations must exercise (create/destroy/join/resign federation, publication/ subscription, etc.)
 - FOM Management and RTTI services
 - Support for OO FOM data representation (deep class hierarchy etc.)
 - Efficient mapping between RTI Run-time typing and simulation compile-time typing
 - Framework for translation between simulation and FOM data representation
 - Common instrumentation for performance analysis

Federation Common Software

Encapsulation and Support Services

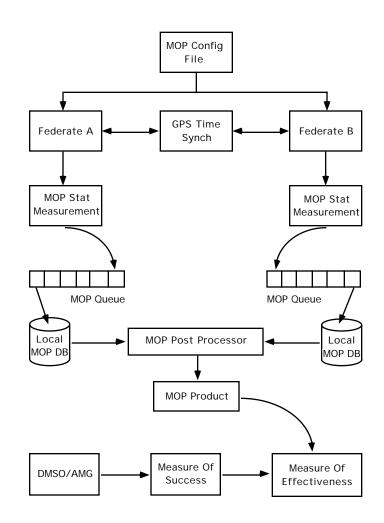


- Encapsulation and automation of services
 - Facade interface to RTI CORBA interfaces
 - Maintain collection of HLA entities known locally
 - Create federation and establish connection
 - Perform publication and subscription
- FOM Management and RTTI services
 - Support for derived classes
 - Efficient mapping between RTI Run-time typing and simulation compile-time typing

Data Translation Flow

FCS/RTI Performance Instrumentation

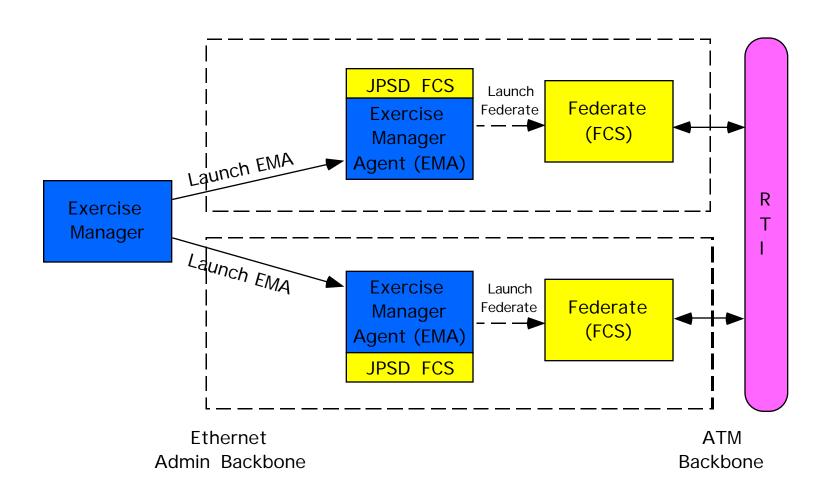
• Instrumentation Approach


- Goal: Measure & collect with as little intrusion as possible
- Log relevant RTI invocations for latency post-processing
- Use separate thread for I/O to local DB to reduce intrusion

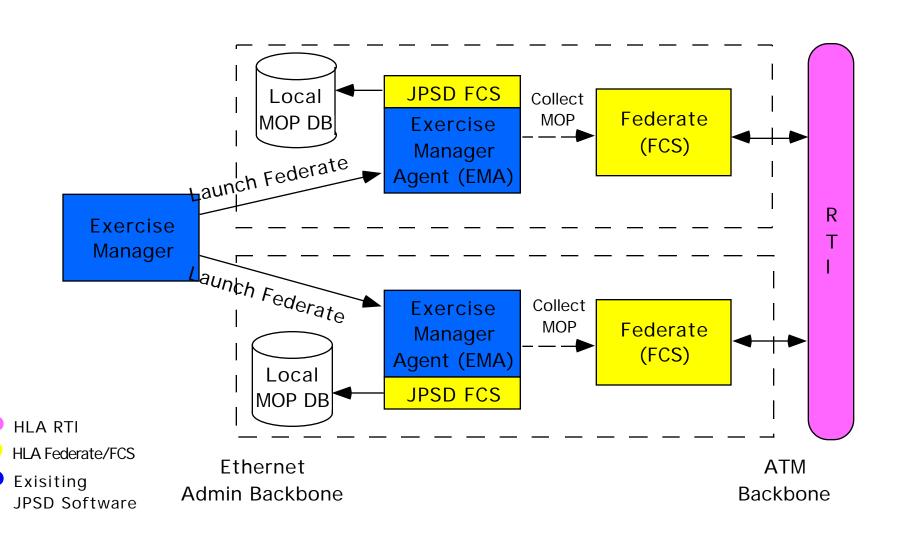
Instrumentation Plan

 Specifies required information for instrumentation of Performance
 Framework including Latency,
 Resource Utilization, Configuration & Control variables

• FCS extension


- Instrument at RTI interface
- Add persistence of MOP.data
- Add support for compile & run-time selection of MOP's to collect

Exercise Mananger Architecture



Process/Host Performance Instrumentation

Results

• Federate Changes

- With our Federation Common Software (FCS) Library we have fewer changes in each federate
- Various changes for time management to assure proper state updates in case of unordered delivery by RTI
- Each Federate has specific code to extend the FCS Libraries
 - The most intensive software module is the interface between the simulations local world view and the FCS Evaluator and Actor classes for processing the attributes

Results

- Found that the HLA does provide required functionality to support CLCGF experiment
 - Aggregate, Engineering, C2, MITL, etc.
- Prototype performance constraints required redefinition of normal JPSD CLCGF scenario (600 entities reduced to less than 100 entities)
- Evolution of HLA definition resulting in support for derived classes